Chevrolet Lanos Парти3ан Бортжурнал Про свечи зажигания и ВВ Провода нулевого сопротивления

3 совета по выбору высоковольтных проводов зажигания

Составные части высоковольтного провода — это токоведущая жила, изоляционный материал, металлические контактные клеммы и колпачки. Иногда дополнительно в состав комплекта включают гребенки, аккуратно собирающие всю проводку в один жгут. Исходя из используемых материалов и технологии изготовления, вся свечная проводка условно разделяется на 3 категории.

В первую включается провод с несколькими токоведущими жилами из меди. В качестве изоляционного материала используется поливинилхлорид.

Ко второй категории относят одножильную высоковольтную проводку зажигания с изоляцией из поливинилхлорида или разновидности полиуретана (EPDM). Данные изделия требуют проверки и использования дополнительных резисторов, подавляющих помехи. Изоляционный слой из ПВХ чувствителен к длительному воздействию низкой и высокой температуры, бензиновых паров, в результате чего изоляция со временем трескается. В образовавшиеся трещины попадает влага, резко снижающая сопротивление жилы и приводящая к утечкам тока. Большая часть отечественной автомобильной продукции по сей день оснащается высоковольтной проводкой именно из этой категории.

В самых современных модификациях применяются жилы из различных неметаллов (стекловолокно, полимерные материалы, графит, кевлар, лен и хлопок, а также всевозможные сочетания указанных материалов). Для изготовления изоляционного слоя в этих проводах используется силиконовая резина, обеспечивающая высокое напряжение на пробой и отсутствие утечек тока в системе зажигания, которые можно выявить проверкой. Эти качества в результате увеличивают мощность искры и общую мощность двигателя. Обеспечивается наиболее полное сгорание топлива и его оптимальный расход.

Все изделия соответствуют существующим техническим требованиям, отличие между категориями состоит лишь в цене и в ресурсе. Для сравнения, минимальный ресурс силиконовых изделий производства ставропольской компании «Цитрон» составляет 160 тысяч км пробега (срок службы при этом неограничен), несиликоновые же модели, как показывает проверка практикой, могут прослужить от силы 50 тысяч км либо до 3 лет эксплуатации в природных условиях России. Стоимость силиконовой проводки при этом выше стоимости классической в 3-4 раза. Задача покупателя в данном случае — выбрать компромиссный вариант между ценой и долговечностью. Помогут с выбором высоковольтных проводов зажигания некоторые советы и рекомендации.

Совет № 1. Внимательно изучите информацию о продукте (производитель, условия использования и др.) — она должна иметься как на упаковке, так и на самом изделии.

Зачастую на подделках английское слово «silicone» печатается с ошибкой. Данное явление столь распространено, что даже встречалось в одном авторитетном печатном СМИ по автомобильной тематике. Авторы ошибочно и без проверки употребили слово «silicon», которое на самом деле переводится как «кремний».

Совет № 2. Оцените качество колпачков на высоковольтной электрике.

Колпачки изготавливаются из силиконовой резины, они необходимы для защиты контактов проводки и для обеспечения герметичности соединений. Минимальная толщина стенок колпачка составляет 3 мм. Как часто показывает проверка, электрическая цепь нарушается именно в месте соединения клеммы проводника с контактами элементов системы зажигания. Обычно это случается при неаккуратном снятии проводки либо при плохом соединении с деталями системы зажигания из-за некачественной посадки, окислительных процессов и т. д.

Совет № 3. Оцените качество самой высоковольтной проводки зажигания.

Наилучшее качество сегодня имеют силиконовые изделия. Есть несколько несложных способов проверки их качества. Например, можно воздействовать на кабель открытым огнем. Если изоляция качественная, легко оплавить или тем более воспламенить ее не получится. Другой способ проверки заключается в крепком скручивании провода. Если ощущается смещение или скольжение жилы относительно оболочки кабеля, а также возникает характерный хруст, значит, сцепление оболочки с изоляцией некачественное. Попробуйте также переместить слой изоляции вдоль проводника. Никаких смещений во время проверки быть не должно, кабель должен быть монолитным. Иначе при монтаже или демонтаже проводки защита может нарушиться.

Обобщение понятия удельного сопротивления

Кусок резистивного материала с электрическими контактами на обоих концах

Удельное сопротивление можно определить также для неоднородного материала, свойства которого меняются от точки к точке. В этом случае оно является не константой, а скалярной функцией координат — коэффициентом, связывающим напряжённость электрического поля E→(r→){\displaystyle {\vec {E}}({\vec {r}})} и плотность тока J→(r→){\displaystyle {\vec {J}}({\vec {r}})} в данной точке r→{\displaystyle {\vec {r}}}. Указанная связь выражается :

E→(r→)=ρ(r→)J→(r→).{\displaystyle {\vec {E}}({\vec {r}})=\rho ({\vec {r}}){\vec {J}}({\vec {r}}).}

Эта формула справедлива для неоднородного, но изотропного вещества. Вещество может быть и анизотропно (большинство кристаллов, намагниченная плазма и т. д.), то есть его свойства могут зависеть от направления. В этом случае удельное сопротивление является зависящим от координат тензором второго ранга, содержащим девять компонент ρij{\displaystyle \rho _{ij}}. В анизотропном веществе векторы плотности тока и напряжённости электрического поля в каждой данной точке вещества не сонаправлены; связь между ними выражается соотношением

Ei(r→)=∑j=13ρij(r→)Jj(r→).{\displaystyle E_{i}({\vec {r}})=\sum _{j=1}^{3}\rho _{ij}({\vec {r}})J_{j}({\vec {r}}).}

В анизотропном, но однородном веществе тензор ρij{\displaystyle \rho _{ij}} от координат не зависит.

Тензор ρij{\displaystyle \rho _{ij}} симметричен, то есть для любых i{\displaystyle i} и j{\displaystyle j} выполняется ρij=ρji{\displaystyle \rho _{ij}=\rho _{ji}}.

Как и для всякого симметричного тензора, для ρij{\displaystyle \rho _{ij}} можно выбрать
ортогональную систему декартовых координат, в которых матрица ρij{\displaystyle \rho _{ij}} становится диагональной, то есть приобретает вид, при котором из девяти компонент ρij{\displaystyle \rho _{ij}} отличными от нуля являются лишь три: ρ11{\displaystyle \rho _{11}}, ρ22{\displaystyle \rho _{22}} и ρ33{\displaystyle \rho _{33}}. В этом случае, обозначив ρii{\displaystyle \rho _{ii}} как ρi{\displaystyle \rho _{i}}, вместо предыдущей формулы получаем более простую

Ei=ρiJi.{\displaystyle E_{i}=\rho _{i}J_{i}.}

Величины ρi{\displaystyle \rho _{i}} называют главными значениями тензора удельного сопротивления.

Измерение сопротивления петли фаза-нуль

Петля «фаза – нуль» – это электрическая цепь переменного тока, которая может возникнуть в результате короткого замыкания между проводами: «фаза» и «ноль» или «фаза» и «фаза». Разрушение изоляции, механические повреждения или случайное соединение оголённых участков кабеля между собой могут стать этому причиной. В установках с глухо заземлённой нейтралью нулевой проводник физически связан с нейтралью трансформатора, она подключена к контуру заземления. При замыкании на корпус или соединении фаз между собой образуется цепь (петля).

Главная задача проводимых измерений – узнавать, каким будет величина тока через петлю при КЗ. Это обязательно для расчёта и подбора защитного оборудования. Хорошим результатом будет маленькое сопротивление петли, тогда ток Iк.з. будет наибольшим. От его величины зависит, как быстро сработает защитный автоматический выключатель.

Чем меньше времени будет затрачено на отключение повреждённой или закороченной цепи, тем больше шансов предотвратить пожар от возгорания кабельной сети. При попадании человека под удар электрического тока в результате прикосновения или короткого замыкания автоматическое снятие напряжения спасёт ему жизнь.

На предприятиях ежегодно проводится комплекс измерений защитного заземления и сопротивления петли фаза – ноль. При неудовлетворительных результатах проводится ряд мероприятий:

  • заменяются участки провода, не отвечающие требованиям по диаметру сечения;
  • перекручиваются болтовые соединения с обязательной установкой врезных шайб;
  • вскрываются контуры защитных заземлений и осматриваются на предмет целостности сварных соединений и состояния элементов заземления;
  • при необходимости в контур защитного заземления добавляются дополнительные элементы;
  • исключается последовательное подключение корпусов устройств к общей шине заземления.

После выполнения комплекса мероприятий измерения проводятся повторно.

Проверка сопротивления петли «фаза – ноль»

Мощность в зависимости от сопротивления

Мощности , рассеиваемой на резисторе может быть вычислена из его сопротивление, а напряжение или ток вовлечены. Формула представляет собой сочетание закона Ома и закон Джоуля :

пзнак равноВ⋅язнак равноВ2рзнак равноя2⋅р{\ Displaystyle Р = У \ CDOT I = {\ гидроразрыва {V ^ {2}} {R}} = I ^ {2} \ CDOT R}

где:

Р есть сила
R представляет собой сопротивление
В это напряжение через резистор
Я ток через резистор

Линейный резистор имеет постоянное значение сопротивления в отношении всех приложенных напряжений или токов; много практических резисторов линейны полезным диапазон токов. Нелинейные резисторы имеют значение , которое может изменяться в зависимости от приложенного напряжения (или тока). Там , где переменный ток подаются на схему (или там , где величина сопротивления является функцией времени), то соотношение выше верно в любой момент времени, но вычисления средней мощности в течение интервала времени , требует интеграции с «мгновенной» власти над этим интервалом.

Поскольку Ом принадлежит к когерентной системе единиц , когда каждая из этих величин имеет свой соответствующий блок SI ( ватт для P , Ом для R , вольт для V и ампера для I , которые связаны , как и в , эта формула остается в силе численно , когда используются эти единицы (и думают как быть отменено или опущен).

Подготовка Омметра для измерений

Ремонт электропроводки, электротехнических и радиотехнических изделий заключается в проверке целостности проводов и в поиске нарушения контакта в их соединениях.

В одних случаях сопротивление должно быть равно бесконечности, например сопротивление изоляции. А в других – равно нулю, например сопротивление проводов и их соединений. А в некоторых случаях равно определенной величине, например сопротивление нити накала лампочки или нагревательного элемента.

Внимание! Измерять сопротивление цепей, во избежание выхода из строя Омметра, допускается выполнять только при полном их обесточивании. Необходимо вынуть вилку из розетки или вынуть батарейки из отсека

Если в схеме есть электролитические конденсаторы большей емкости, то их необходимо разрядить, замкнув выводы конденсатора через сопротивление номиналом около 100 кОм на несколько секунд.

Как и при измерениях напряжения, перед измерением сопротивления, необходимо подготовить прибор. Для этого нужно установить переключатель прибора в положение, соответствующее минимальному измерению величины сопротивления.

Перед измерениями следует проверить работоспособность прибора, так как могут быть плохими элементы питания и Омметр может не работать. Для этого нужно соединить между собой концы щупов.

У тестера стрелка при этом должна установится точно на нулевую отметку, если не установилась, то можно покрутить ручку «Уст. 0». Если не получится, надо заменить батарейки.

Для прозвонки электрических цепей, например, при проверке электрической лампочки накаливания, можно пользоваться прибором, у которого сели батарейки и стрелка не устанавливается на 0, но хоть немного реагирует при соединении щупов. Судить о целостности цепи будет возможно по факту отклонения стрелки. Цифровые приборы должны тоже показывать нулевые показания, возможно отклонение в десятых долях омов, за счет сопротивления щупов и переходного сопротивления в контактах подключения их к клеммам прибора.

При разомкнутых концах щупов, стрелка тестера должна установится в точку, обозначенную на шкале ∞, а в цифровых приборах, мигать перегрузка или высвечиваться цифра 1 на индикаторе с левой стороны.

Омметр готов к работе. Если прикоснуться концами щупов к проводнику, то в случае его целостности, прибор покажет нулевое сопротивление, в противном случае, показания не изменятся.

В дорогих моделях мультиметров есть функция прозвонки цепей со звуковой индикацией, обозначенная в секторе измерения сопротивлений символом диода. Она очень удобна при прозвонке низкоомных цепей, например проводов кабеля витых пар для Интернета или бытовой электропроводки. Если провод цел, то прозвонка сопровождается звуковым сигналом, что освобождает от необходимости считывать показания с индикатора мультиметра.

Проверка лампочек накаливания

Не горит лампа в светильника? В чем причина? Поломка может быть в патроне, выключателе или электропроводке. Лампа накаливания, энергосберегающая, лампа дневного света проверяется тестером. Причем сделать это довольно таки просто. Для этого следует установить на тестере ползунок в положение измерения минимального сопротивления и прикоснуться к цоколю концами щупов.

На экране видно, что сопротивление нити накала равно 51 Ом. Это значит, что лампа исправна. Если бы нить была оборвана, на экране показалось бесконечное сопротивление. Автомобильная лампа 12 В и 100 Вт показывает сопротивление в 1,44 Ом. Галогенка на 220 В и 50 Вт выдает 968 Ом.

Нить накала будет показывать меньшее сопротивление в охлажденном состоянии, когда лапа нагрета, этот показатель может увеличиться в несколько раз. Поэтому, зачастую лампы сгорают во время включения. Это потому, что при включении, ток, идущий через нить, превышает допустимый в несколько раз.

Переходное сопротивление заземления

Схема заземления включает в себя множество элементов, соединенных между собой. В случае обрыва, распайки швов или окисления соединений данный показатель начинает увеличиваться, что приводит к ухудшению эффективности защитной системы. При существовании большой массы потребителей и наличие значимых соединений в заземляющей схеме данная величина возрастает.

В промежутках соединений элементов заземления определяют переходное сопротивление. Для контактирующего соединения допускается максимальное значение 0,05 Ом. В случаях, когда данный показатель выше 0,05 Ом, это говорит о неработоспособности системы. Такие неисправности необходимо устранять, так как увеличенное сопротивление, делает защитные функции системы ничтожными.

Переходное сопротивление в заземляющем устройстве называется металлосвязью. Она характеризует соединение в цепи между заземляющим устройством и заземляемым электрооборудованием. Дефекты, возникающие в металлосвязи, ведут к короткому замыканию. Цель замеров сопротивления металлосвязи — определение наличия повреждения на отрезке участка электрооборудования и заземляющего устройства.

Основной характеристикой металлосвязи является сопротивление измеряемой части заземляющей системы, которое должно соответствовать 0,05 Ом. В ходе проверки исследуются надежность и правильность соединений посредством визуального осмотра. Качество сварочных швов проверяется ударом тяжелого молотка. В ПУЭ оговаривается, что заземляющие проводники должны быть надежно скреплены, что обеспечивает целостность электрической линии.

Заземляющие проводники, сделанные из стали, требуется соединять при помощи сварки. Данные участки должны быть расположены так чтобы предоставить беспрепятственный доступ для осуществления проверок, измерений, осмотров в дальнейшем времени.

Согласно требованиям ПУЭ соединения проводников и нейтралей присоединяются посредством сварки или болтов. Для присоединения электроприборов, которые постоянно монтируются, употребляются гибкие проводники.

Кратные и дольные единицы

Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
101 Ом декаом даОм daΩ 10−1 Ом дециом дОм
102 Ом гектоом гОм 10−2 Ом сантиом сОм
103 Ом килоом кОм 10−3 Ом миллиом мОм
106 Ом мегаом МОм 10−6 Ом микроом мкОм µΩ
109 Ом гигаом ГОм 10−9 Ом наноом нОм
1012 Ом тераом ТОм 10−12 Ом пикоом пОм
1015 Ом петаом ПОм 10−15 Ом фемтоом фОм
1018 Ом эксаом ЭОм 10−18 Ом аттоом аОм
1021 Ом зеттаом ЗОм 10−21 Ом зептоом зОм
1024 Ом йоттаом ИОм 10−24 Ом йоктоом иОм
 применять не рекомендуется  не применяются или редко применяются на практике

Что такое резисторы?

Радиоэлектронные элементы, имеющие заданное постоянное омическое сопротивление, не проявляющие в разумных пределах индуктивность и емкость, называются в электронике резисторами.

В практике применяются резисторы от долей Ома до десятков мегаомов.

мегаом / мегом МОм MOhm 1E6 Ом 1000000 Ом
килоом кОм kOhm 1E3 Ом 1000 Ом

ЭлектротехникаФормулы Физика Теория Электричество

В вашем браузере отключен Javascript. Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Проверка резисторов на соответствие номиналам

Для проверки необходимо найти значения сопротивлений. Их можно увидеть по порядковому номеру элемента на схеме или в спецификации.

Измерение сопротивления является самым распространенным способом проверки резистора. В данном случае определяется соответствие номиналу и допуску.

Величина сопротивления должна быть в пределах диапазона, который на мультиметре устанавливается переключателем. Щупы подключаются к гнездам COM и VΩmA. Перед тем как проверить резистор тестером, сначала определяется исправность его проводов. Их замыкают между собой, и прибор должен показать величину сопротивления, равную нулю или немного больше. При измерениях малых сопротивлений эта величина вычитается из показаний прибора.

Если энергии элементов питания недостаточно, обычно получается сопротивление, отличное от нуля. В этом случае следует заменить батарейки, поскольку точность измерений будет низкой.

Новички, не зная, как проверить резистор на работоспособность мультиметром, часто касаются руками щупов прибора. Когда измеряются величины в килоомах, это недопустимо, поскольку получаются искаженные результаты. Здесь следует знать, что тело также имеет определенное сопротивление.

При фиксации прибором величины сопротивления, равной бесконечности, это является показателем наличия обрыва (на экране горит «1»). Редко встречается наличие пробоя резистора, когда его сопротивление равно нулю.

После измерения полученное значение сравнивается с номиналом. При этом учитывается допуск. Если данные совпадают, резистор исправен.

Когда появляются сомнения в правильности показаний прибора, следует замерить величину сопротивления исправного резистора с тем же номиналом и сравнить показания.

Признаки и поиск неисправности

Если не обращать на это внимания, трещины дойдут до токоведущего покрова, тогда импульс запуска не будет активно поступать к распределителю.

О разной степени неисправности вв провода можно судить по следующим симптомам:

  1. движок периодически не запускается, чаще в холодную погоду;
  2. происходит спад мощности и появляются посторонние шумы при движении;
  3. автомагнитола проявляет радиопомехи;
  4. повышена трата топлива;
  5. появляются пробоины или изменения цвета с наружной стороны.

В первую очередь поиск повреждения нужно искать на глаз – повреждения и трещины можно найти визуально. Если на улице темно, место пробоя будет искрить.

Второй способ – подключить кусок провода к массе (например, кузову) одним концом, а другим , стыкам, колпачкам. На поврежденных местах появится искра.

Мнемоническая диаграмма для закона Ома

Схема, иллюстрирующая три составляющие закона Ома

Диаграмма, помогающая запомнить закон Ома. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисления

U — электрическое напряжение;I — сила тока;P — электрическая мощность;R — электрическое сопротивление

В соответствии с этой диаграммой формально может быть записано выражение:

R=UI,(7){\displaystyle R\!={U \over I},\qquad (7)}

которое всего лишь позволяет вычислить (применительно к известному току, создающему на заданном участке цепи известное напряжение), сопротивление этого участка. Но математически корректное утверждение о том, что сопротивление проводника растёт прямо пропорционально приложенному к нему напряжению и обратно пропорционально пропускаемому через него току, физически ложно.

В специально оговорённых случаях сопротивление может зависеть от этих величин, но по умолчанию оно определяется лишь физическими и геометрическими параметрами проводника:

R=ϱls,(8){\displaystyle R\!={\varrho l \over s},\qquad (8)}

где:

  • ϱ{\displaystyle \varrho } — удельное электрическое сопротивление материала, из которого сделан проводник,
  • l{\displaystyle l} — его длина
  • s{\displaystyle s} — площадь его поперечного сечения

Закон Ома и ЛЭП

Одним из важнейших требований к линиям электропередачи (ЛЭП) является уменьшение потерь при доставке энергии потребителю. Эти потери в настоящее время заключаются в нагреве проводов, то есть переходе энергии тока в тепловую энергию, за что ответственно омическое сопротивление проводов. Иными словами, задача состоит в том, чтобы довести до потребителя как можно более значительную часть мощности источника тока P{\displaystyle P} = εI{\displaystyle {\varepsilon \!I\!}} при минимальных потерях мощности в линии передачи P(r)=UI,{\displaystyle P(r)=UI,} где U=Ir,{\displaystyle U\!=Ir,} причём r{\displaystyle r} на этот раз есть суммарное сопротивление проводов и внутреннего сопротивления генератора (последнее всё же меньше сопротивления линии передач).

В таком случае потери мощности будут определяться выражением

P(r)=P2rε2.(9){\displaystyle P(r)={\frac {P^{2}r}{\varepsilon ^{2}}}.\qquad (9)}

Отсюда следует, что при постоянной передаваемой мощности её потери растут прямо пропорционально длине ЛЭП и обратно пропорционально квадрату ЭДС. Таким образом, желательно всемерное увеличение ЭДС. Однако ЭДС ограничивается электрической прочностью обмотки генератора, поэтому повышать напряжение на входе линии следует уже после выхода тока из генератора, что для постоянного тока является проблемой. Однако для переменного тока эта задача много проще решается с помощью использования трансформаторов, что и предопределило повсеместное распространение ЛЭП на переменном токе. Однако при повышении напряжения в линии возникают потери на коронирование и возникают трудности с обеспечением надёжности изоляции от земной поверхности. Поэтому наибольшее практически используемое напряжение в дальних ЛЭП обычно не превышает миллиона вольт.

Кроме того, любой проводник, как показал Дж. Максвелл, при изменении силы тока в нём излучает энергию в окружающее пространство, и потому ЛЭП ведёт себя как антенна, что заставляет в ряде случаев наряду с омическими потерями брать в расчёт и потери на излучение.

Практическое использование

Видео: Закон Ома для участка цепи — практика расчета цепей.

Собственно, к любому участку цепи можно применить этот закон. Пример приведен на рисунке.

Применяем закон к любому участку цепи

Используя такой план, можно вычислить все необходимые характеристики для неразветвленного участка. Рассмотрим более детальные примеры.Находим силу тока
Рассмотрим теперь более определенный пример, допустим, возникла необходимость узнать ток, протекающий через лампу накаливания. Условия:

  • Напряжение – 220 В;
  • R нити накала – 500 Ом.

Решение задачи будет выглядеть следующим образом: 220В/500Ом=0,44 А.

Рассмотрим еще одну задачу со следующими условиями:

  • R=0,2 МОм;
  • U=400 В.

В этом случае, в первую очередь, потребуется выполнить преобразование: 0,2 МОм = 200000 Ом,после чего можно приступать к решению: 400 В/200000 Ом=0,002 А (2 мА).Вычисление напряжения
Для решения мы также воспользуемся законом, составленным Омом. Итак задача:

  • R=20 кОм;
  • I=10 мА.

Преобразуем исходные данные:

  • 20 кОм = 20000 Ом;
  • 10 мА=0,01 А.

Решение: 20000 Ом х 0,01 А = 200 В.

Незабываем преобразовывать значения, поскольку довольно часто ток может быть указан в миллиамперах.

Сопротивление.

Несмотря на то, что общий вид способа для расчета параметра «R» напоминает нахождение значения «I», между этими вариантами существуют принципиальные различия. Если ток может меняться в зависимости от двух других параметров, то R (на практике) имеет постоянное значение. То есть по своей сути оно представляется в виде неизменной константы.

Если через два разных участка проходит одинаковый ток (I), в то время как приложенное напряжение (U) различается, то, опираясь на рассматриваемый нами закон, можно с уверенностью сказать, что там где низкое напряжение «R» будет наименьшим.

Рассмотрим случай когда разные токи и одинаковое напряжение на несвязанных между собой участках. Согласно закону, составленному Омом, большая сила тока будет характерна небольшому параметру «R».

Рассмотрим несколько примеров.

Допустим, имеется цепь, к которой подведено напряжение U=50 В, а потребляемый ток I=100 мА. Чтобы найти недостающий параметр, следует 50 В / 0,1 А (100 мА), в итоге решением будет – 500 Ом.

Вольтамперная характеристика позволяет наглядно продемонстрировать пропорциональную (линейную) зависимость закона. На рисунке ниже составлен график для участка с сопротивлением равным одному Ому (почти как математическое представление закона Ома).

Изображение вольт-амперной характеристики, где R=1 Ом

Изображение вольт-амперной характеристики

Вертикальная ось графика отображает ток I (A), горизонтальная – напряжение U(В). Сам график представлен в виде прямой линии, которая наглядно отображает зависимость от сопротивления, которое остается неизменным. Например, при 12 В и 12 А «R» будет равно одному Ому (12 В/12 А).

Обратите внимание, что на приведенной вольтамперной характеристике отображены только положительные значения. Это указывает, что цепь рассчитана на протекание тока в одном направлении

Там где допускается обратное направление, график будет продолжен на отрицательные значения.

Заметим, что оборудование, вольт-амперная характеристика которого отображена в виде прямой линии, именуется — линейным. Этот же термин используется для обозначения и других параметров.

Помимо линейного оборудования, есть различные приборы, параметр «R» которых может меняться в зависимости от силы тока или приложенного напряжения. В этом случая для расчета зависимости нельзя использовать закон Ома. Оборудование такого типа называется нелинейным, соответственно, его вольт-амперные характеристики не будут отображены в виде прямых линий.

Единицы измерения

Единица измерения удельного сопротивления в Международной системе единиц (СИ) — Ом·м. Из соотношения ρ=R⋅Sl{\displaystyle \rho ={\frac {R\cdot S}{l}}} следует, что единица измерения удельного сопротивления в системе СИ равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 м², изготовленный из этого вещества, имеет сопротивление, равное 1 Ом. Соответственно, удельное сопротивление произвольного вещества, выраженное в единицах СИ, численно равно сопротивлению участка электрической цепи, выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 м².

В технике также применяется устаревшая внесистемная единица Ом·мм²/м, равная 10−6 от 1 Ом·м. Данная единица равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 мм², изготовленный из этого вещества, имеет сопротивление, равное 1 Ом. Соответственно, удельное сопротивление какого-либо вещества, выраженное в этих единицах, численно равно сопротивлению участка электрической цепи, выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 мм².

Ссылка на основную публикацию