Каким был первый робот в мире Происхождение слова Робот

Содержание

Робоофициант

Роботы массово обучаются искусству принимать заказы и носить тарелки от столика к столику. Так компания Pizza Hut объявила о своем намерении нанять на работу гуманоида по имени Pepper Robot. Пока новоявленный официант не способен понимать речь – чтобы сделать заказ, клиенту пиццерии достаточно будет скачать приложение, зарегистрировать в нем свою карту с услугой Masterpass и осуществить синхронизацию с роботом.

А как быть, если некому принести стакан воды дома? Можно последовать примеру немецких ученых, которые научили робота доставать из холодильника напиток – правда, не воду, а алкоголь. TIAGo успешно справляется с задачей и приносит пиво хозяину.

Еще одна модель робота-официанта, которую можно купить за 20 с лишним тысяч долларов уже сегодня, – Serving Cart от компании Florida Robotics. Он выглядит менее человекоподобным, чем TIAGo, зато куда более расторопен. Робот представляет собой автономную систему сервировки стола: он подает блюда и умеет издавать различные забавные звуки. Благодаря системе навигации официант свободно снует среди гостей без риска разбить тарелку или пролить напиток. Заряда батареи хватает на сутки, а видео с встроенной камеры робота можно транслировать на экраны в режиме реального времени – это однозначно произведет впечатление на присутствующих.

Есть даже такие роботы, которых не разглядеть

Нанороботы, или наноботы — самые мелкие представители отрасли. Их разрабатывают, к примеру, для доставки лекарственных веществ непосредственно к заболевшим органам или очагам инфекций.

Кроме того, молекулярные машины могут вести подсчёт молекул в отдельных образцах или отслеживать химические процессы в автомобилях. Разрабатывают и нанороботов, которые смогут помещать сперматозоид в яйцеклетку:

Роботы размером в несколько нанометров примитивны и лишены электроники, но свою функцию выполняют. Правда, пока речь идёт о лабораторных разработках, а не о промышленных образцах.

Робот Boston Dynamics Atlas, который выполняет элементы паркура

Робот Boston Dynamics’ Atlas

Робот Atlas, вес которого 75 кг и высота 1,5 м, разработанный Boston Dynamics, на многочисленных рекламных видео демонстрирует способность определять и справляться с препятствиям, благодаря системе компьютерного зрения, а также великолепно балансировать.

Atlas способен передвигаться по пересеченной местности, сохраняя равновесие; во время бега перепрыгивать через бревно и довольно легко запрыгивать на несколько ящиков; поднимать различные предмет и манипулировать ими. А также выполнять элементы паркура: сальто вперед и назад. Марк Райберт из команды разработчиков отмечает, что на данный момент робот справляется не со всеми поставленными перед ним задачами. Но демонстрации его возможностей служат вдохновляющими примерами для дальнейшего усовершенствования Atlas-а.

Какие бывают типы роботов:

Промышленные роботы

– выполняют различные производственные задачи. Всегда есть устройство управления – контроллер, может включать в себя манипулятор, сервопривод, различные сенсоры, пневмоцилиндры и многое другое. Все зависит от того, что делают на этом производстве. Например — склады, логистика здесь требуются конвейеры, штабелеры и т.д. Выполняют различные технологические операции, перемещение предметов, обработку материалов.

Медицинские роботы

– наиболее известный хирургический робот «Да Винчи». Он управляется несколькими операторами хирургами. При его помощи проводят высокоточные операции. По своей сути это управляемый манипулятор. Обычно медицинские роботы совсем не похожи на людей. Также есть роботы, которые выполняют отдельные функции, например, массаж или внутривенные инъекции, терапевтические функции и прочее. Для более точечных операций идет разработка нано-роботов. Они смогут вводиться внутрь человеческого организма.

Бытовые роботы

– облегчают жизнь человеку. Это роботы, выполняющие функции секретаря, уборки помещений, роботы животные. Например робот-собачка, способная выполнять некоторые команды, роботы-пылесосы и другие.

Робот, которые обеспечивают безопасность.

— широко используются силовыми структурами. Это системы контроля доступом, автоматические устройства пожаротушения. МЧС и полиция используют беспилотники-дроны, подводных роботов для предотвращения пожаров и глубоководных работ.

Боевые роботы

—  являются как правило дистанционно управляемыми и предназначены для замены человека в особо опасных и боевых ситуациях. Это роботы-минеры, роботы-саперы, роботы разведчики. Автономные боевые роботы пока находятся в стадии разработки.

Роботы учёные

– постепенно начинают использоваться для научных исследований и разработок. Для них используют все более совершенные алгоритмы управления. Роботы уже в состоянии проводить научные эксперименты, опыты, анализировать различные процессы, делать прогнозы и выдвигать теории.  Эти роботы могут работать без перерыва, у них нет амбиций, они не могут обманывать и утаивать информацию. Также роботы лишены субъективной оценки своей работы.

Робот учитель

– может выполнять многие задачи, которые выполняет современный учитель. Он может читать вслух, общаться на многих языках, выдавать задания. Но пока не может распознавать эмоции человека, думать, как человек. Такой робот-учитель лишен индивидуального подхода к учащимся. У него сложности с мотивацией учеников и управлением классом.

Мы видим что различных типов роботов достаточно много и тому что такое робот можно дать много определений. Но пока у всех роботов отсутствует эмоциональная составляющая, пока это только управляемые программируемые механизмы. Этот перечень роботов далеко не полный. Каждый тип роботов также подразделяется на множество видов. С каждым годом мир роботов становится все больше и разнообразнее.

Самый маленький робот-гуманоид

Самый миниатюрный человекоподобный механизм был разработан компанией GeStream Technology и представлен на международной робовыставке в Тайвани.

Мини-гуманоид умеет ходить, танцевать, отжиматься и даже выполнять несложные  приемы тай-чи – одного из видов восточной борьбы. Управлять роботом можно с помощью пульта или голосовых команд.

Робот-оригами из биоматериала

Ученые из Массачусетского технологического института совместно с коллегами из Шеффилдского университета и Токийского технологического института разработали робота-оригами, который сам собирается в единый механизм после того, как попал в желудок пациента. Его передвижения контролируются с помощью магнитного поля.

В качестве материала для необычного робота разработчики использовали высушенный свиной кишечник, который применяют при производстве оболочки для колбасно-сосисочных изделий. Однако в ходе тестирования возникла проблема: робот должен был разворачиваться и передвигаться в желудке, а на это способна только твердая субстанция. Поэтому пришлось сделать разрезы на корпусе: устройство сгибается по намеченным линиям и становится более устойчивым.

Биооригами сделан в форме прямоугольника, складывающегося в гармошку. Внутрь встроен магнит, который дергает гаджет под воздействием электромагнитного поля и перемещает его. Основная цель робота – доставать проглоченные мелкие предметы, например, батарейки, которые могут наносить серьезный ущерб внутренним органам, прожигая их насквозь.

Чтобы можно было легко проглотить биоконструкцию, не повредив пищевод, робота помещают в ледяную капсулу, растворяющуюся в желудке под воздействием тепла и желудочного сока. В развернутом виде устройство составляет около 6 см в длину, в свернутом оно в три раза компактнее.

Ранее ученые из Массачусетского технологического университета уже создавали робота-оригами из поливинилхлорида и неодимового магнита, подробнее о нем можно почитать здесь.

Одна из компаний, занимающихся схожими разработками – Nanotechnology Development Corp. Британская корпорация работает над проектом «Фрактальный хирург» – эта технология создана на основе принципа конструктора «Лего». Суть в том, что в тело больного через разрезы длиной 2 мм помещаются части робота – миллиметровые кубики. Внутри тела механизм соберется в единое целое самостоятельно.

В скором будущем роботов смогут помещать в человека без оперативного вмешательства, внутри организма механические хирурги будут выполнять сложные процедуры: удалять раковые клетки, дробить камни в почках, разрушать тромбы. Технология уже разработана, осталось дождаться ее внедрения.

Робот-муха

Специалисты из Гарвардского университета изобрели мини-робот в виде мухи. Механизм состоит из сверхлегкого углепластика, весит 80 граммов и делает до 120 взмахов в секунду. Само устройство чуть больше монеты, размах крыльев достигает 3 см.

Несмотря на то, что пока инженерам не удалось добиться автономности – питание робота осуществляется проводным способом – Robo-Fly очень ловко имитирует движения настоящего насекомого – настолько, что в полете его весьма непросто поймать руками.

В будущем роботу планируют доверить поисковые операции – юркий и быстрый механизм, оснащенный камерой наблюдения, оперативно обнаружит место происшествия и даст наводку службам спасения.

Самый миниатюрный автономный робот


Пальму первенства получает устройство, разработанное Брюсом Дональдом и сотрудниками Дартмутского колледжа, –  это самый маленький робот в мире длиной 0,25 мм и шириной 0,06 мм.

Модель управляется дистанционно и полностью автономна: ей не требуется подключаться к другим приборам, чтобы работать. Мини-устройство способно ежесекундно проходить десятки тысяч шагов шириной до 10 нанометров – это очень быстрая скорость для такого крохи.

Авторы проекта стали инноваторами в сфере роботостроения, несмотря на то что при разработке механизма пришлось столкнуться с трудностями. Самая сложная задача состояла в том, чтобы сделать крохотный механизм функциональным: настроить управление, подачу питания, приема и декодирования команд. В итоге ученые решили вопрос нестандартно – робот представляет собой цельный кусочек кремния, без деталей сборки, батарей и микропроцессоров. Память хранится в простом электромеханическом переключателе, рулевом рычаге, который также выполняет роль поворотника.

Определение понятия

Прежде, чем говорить о том, какими были самые первые роботы, следует определить, что именно подразумевается под данным понятием

Это имеет важное значение для понимания развития данной технологии и ее уникальности. Первое появление слова «робот» относится к 1920 году, когда чешский писатель Карел Чапек употребил его в фантастической пьесе «Rossumovi univerzální roboti (R.U.R)»

Там оно обозначало искусственно созданного человека, чей труд использовался на тяжелых и опасных производствах взамен человеческого (robota в переводе с чешского – каторга). И хотя в этом произведении роботы изготавливались на фабриках из выращенных органических тканей, само понятие впоследствии было популяризировано именно в отношении механических устройств.

Робота следует отличать от простых механизмов и автоматов. Это устройство обладает способностью к более тесному и комплексному взаимодействию с оператором и внешней средой. Если простой автоматический механизм при выполнении определенного действия слепо следует заранее заложенному в нем алгоритму, то робот способен воспринимать внешние сигналы и в соответствии с ними адаптировать свои действия. Таким образом его взаимодействие с внешней средой становится более гибким, точным и универсальным. Даже самые первые в мире роботы, о которых будет сказано далее, имели примитивные аналоги органов чувств, без которых это принципиальное отличие было бы невозможным.

Современный этап развития робототехники

Механические игрушки-автоматоны изготавливались часовщиками вплоть до начала 20 столетия. Их главным недостатком был сильно ограниченное время действия и слабость из-за особенностей пружинного заводного механизма. Однако развитие технологии электричества дало человечеству новый источник энергии, которым можно было питать устройства гораздо более продолжительное время. В то же время начинаются и первые попытки заставить сложные механизмы работать на человека, заменяя его труд на производстве. Уже в 1808 году французский ткач Жозеф Мари Жаккар изобрел ткацкий станок, программируемый с помощью перфокарт. Пока это был еще не робот – скорее, аналог современных автоматизированных линий. Но именно в нем впервые в промышленности был реализован принцип программирования, на котором держится современная робототехника.

Параллельно совершенствовались и способы управления – в частности проводной и радиоволновой. В 1898 году Никола Тесла впервые продемонстрировал самоходную лодку, управляемую дистанционно с помощью радио. Одновременно вместо сложных механических приводов устройства начали обзаводиться более простыми, мощными и миниатюрными электрическими двигателями.

Уже к началу 20 века сформировались все условия, обусловившие создание первых роботов. Электрический ток стал не только источником питания, но и средством получения, передачи и обработки информации. Сложно сказать, когда появился первый робот в современном понимании этого слова. Многие компании и отдельные разработчики тех времен вели работу в области создания подобных машин. В 20-30-е годы прошлого века было разработано более 30 механизмов, соответствующих требованиям полноценной робототехники.

И все же считается, что человек, создавший первого действующего робота – американский инженер Рой Уэнсли из корпорации Westinghouse Electric Company. Разработанный им в 1928 году механизм под названием «Герберт Телевокс» представлял собой человекоподобную машину, способную открывать двери и окна, отключать духовку, электродвигатели и т. д. Важнейшим отличием этого изобретения от автоматонов являлось умение отвечать и реагировать на команды, подаваемые ему по телефону. При этом робот был не подключен к линии напрямую – он, подобно человеку, с помощью встроенного микрофона слушал приказания. Из-за несовершенства технологий того времени эти команды представляли собой не обычную речь, а определенную последовательность гудков, писков, скрежетов и других звуков различной тональности.

Первенство Роя Уэсли оспаривает Макото Нисимура – японский ученый-биолог, создатель первого действующего робота в Японии (1929 год). Этот управляемый по проводам антропоморфный механизм был способен по командам выполнять различные манипуляции руками, в частности писать. Еще одним претендентом на роль родоначальника роботов был Эрик, разработанный в том же 1928 году британским военным Уильямом Ричардсом. Механизм мог не только двигать конечностями, но и «осмысленно» отвечать на ряд вопросов, при этом даже умудряясь отпускать шутки.

Однако эти и многие другие роботы предназначались для демонстрации научных достижений, но не для практической деятельности. Возникновение робототехники в производстве или сельском хозяйстве произошло позже, потому как такая работа требовала качественно нового уровня технологий. Хотя стоит отметить, что первый прообраз промышленного робота появился еще в 1898 году – это был созданный американским инженером Бэббитом манипулятор, с помощью которого выхватывались заготовки из раскаленной печи.

В 1948 году в США компанией General Electric был создан первый промышленный робот для работы на атомном реакторе. Его особенностью было наличие обратной связи – оператор мог не только видеть его перемещение в рабочем пространстве, но и чувствовать силу, которую развивал захват манипулятора, что позволяло управлять механизмом более точно. В середине 50-х годов американец Джордж Девол основал компанию Unimation, которая занималась выпуском первых серийных промышленных роботов, программируемых с помощью перфокарт. Уже к середине 60-х годов в развитых странах насчитывалось несколько десятков компаний, наладивших выпуск подобных машин. Особенно в этом преуспела Япония – закупив у «Юнимейшн» первые роботы в 1968 году, уже через 10 лет эта страна стала мировым лидером по выпуску собственных аналогов и оснащения ими производств.

Потенциальные сферы применения робота Федора

Федор делался по заказу МЧС, поэтому пока его главная задача – спасение жизней. Он сможет работать там, где обычные спасатели работать бы не смогли, – например, на территориях химического заражения или в зданиях с высоким радиационным фоном. Уже сейчас Фонд перспективных исследований совместно с Росатомом создает прототипы, которые смогут заняться сортировкой радиоактивных отходов (правда, пока неизвестно, будет ли эта функция реализована непосредственно в Федоре или в другом роботе).

Также рассматривается возможность того, чтобы он самостоятельно вытаскивал людей из-под завалов. Благодаря хорошей моторике рук, Федор сможет помочь людям на производстве, в том числе на сборке других роботов. Ведутся и проекты по созданию роботов-саперов. Он будет полезен и в медицинской сфере – уже сейчас Федор умеет делать уколы и накладывать шины. Стоит отметить, что пока тонкую работу он выполняет не самостоятельно, а когда им дистанционно управляет человек, однако в будущем наверняка и сам сможет справиться с такими задачами.

Предыстория

Мифические искусственные существа

Идея искусственных созданий впервые упоминается в древнегреческом мифе о Кадме, который, убив дракона, разбросал его зубы по земле и закопал их, из зубов выросли солдаты, и в другом древнегреческом мифе о Пигмалионе, который вдохнул жизнь в созданную им статую — Галатею. Также в мифе про Гефеста рассказывается, как он создал себе различных слуг. Еврейская легенда рассказывает о глиняном человеке — Големе, который был оживлён пражским раввином Йехудой бен Бецалелем при помощи каббалистической магии.

Похожий миф излагается в скандинавском эпосе Младшая Эдда. Там рассказывается о глиняном гиганте Мёккуркальви, созданном троллем Хрунгниром для схватки с Тором, богом грома.

Технические устройства

Сведения о первом практическом применении прообразов современных роботов — механических людей с автоматическим управлением — относятся к эллинистической эпохе. Тогда на маяке, сооружённом на острове Фарос, установили четыре позолоченные женские фигуры. Днём они горели в лучах солнца, а ночью ярко освещались, так что всегда были хорошо видны издалека. Эти статуи через определённые промежутки времени, поворачиваясь, отбивали склянки; в ночное же время они издавали трубные звуки, предупреждая мореплавателей о близости берега.

Прообразами роботов были также механические фигуры, созданные арабским учёным и изобретателем Аль-Джазари (1136—1206). Так, он создал лодку с четырьмя механическими музыкантами, которые играли на бубнах, арфе и флейте.

Чертёж человекоподобного робота был сделан Леонардо да Винчи около 1495 года. Записи Леонардо, найденные в 1950-х, содержали детальные чертежи механического рыцаря, способного сидеть, раздвигать руки, двигать головой и открывать забрало. Дизайн, скорее всего, основан на анатомических исследованиях, записанных в Витрувианском человеке. Неизвестно, пытался ли Леонардо построить робота.

В XVI—XVIII веках в Западной Европе получило значительное распространение конструирование автоматонов — заводных механизмов, внешне напоминающих человека или животных и способных иногда выполнять достаточно сложные движения. В коллекции Смитсоновского института имеется один из наиболее ранних образцов таких автоматонов — «испанский монах» (примерно 40 см в высоту), способный прогуливаться, ударяя себя в грудь правой рукой и кивая головой; периодически он подносит находящийся в его левой руке деревянный крест к губам и целует его. Считается, что этот автоматон был изготовлен примерно в 1560 году механиком для императора Карла V.

С начала XVIII века в прессе начали появляться сообщения о машинах с «признаками разума», однако в большинстве случаев выяснялось, что это мошенничество. Внутри механизмов прятались живые люди или дрессированные животные.

Французский механик и изобретатель Жак де Вокансон создал в 1738 году первое работающее человекоподобное устройство (андроид), которое играло на флейте. Он также изготовил механических уток, которые, как говорили, умели клевать корм и «испражняться».

Но роботы бывают разные. Даже двуногие

Эксперты едины во мнении, что в будущем войны перейдут в новый формат: воевать будут только роботы. Такие разработки уже применяют армии США, Израиля и других стран.

BigDog для DARPA разрабатывается как раз как военный транспортировщик. В Южной Корее работают роботы-часовые, которые охраняют границу с Северной Кореей.

Компания MegaBots – лидер разработки боевых роботов в США. Недавно она показала гигантского боевого робота Eagle Prime. Управляют им два пилота из встроенной кабины. Масса робота – около 12 т, высота – больше 5 м.

Внутри – V-образный восьмицилиндровый мотор мощностью 430 лошадиных сил. Пушка и огромная клешня помогут Eagle Prime победить противников в боях роботов.

Главные соперники США – японцы. Один из самых крутых японских мехов – Kuratas. Да, мехи давно вышли за пределы компьютерных игр:

В России боевые роботы применяются более двух десятилетий. К примеру, в войне в Чечне в 2000 году робот «Вася» находил и обезвреживал радиоактивные вещества.

Роботы-разведчики «Гном» могут обезвреживать мины в толще воды и на дне. В состав комплекса «Уран» входят роботы для разведки и огневой поддержки.

Главная сложность здесь – нарушение фундаментальных законов робототехники: робот не может наносить вред человеку.

И при этом разработчики не гарантируют, что робот отличит солдат противника от мирных жителей, атакующих от сдающихся; поэтому финальную команду, которая может привести к нанесению телесных повреждений или убийству, всё равно отдаёт человек.

Робот-русалка

Как выглядит: робот по форме немного напоминает аквалангиста, имеет длину 1,5 метра, стереоскопическое зрение и два манипулятора. 8 двигателей приводят OceanOne в движение. На борту установлена мощная батарея, передающее оборудование и независимый компьютер. Роботом можно управлять удаленно или отправить его на самостоятельное выполнение заданных команд.

Фишка: уникальной особенностью робота является сверхчувствительная клешня для захвата. Устройство оборудовано обратной связью с оператором и может очень точно выполнять его команды. Это приспособление позволит собирать уцелевшие артефакты, ценности или образцы флоры без риска повредить их.

Кто придумал: группа разработчиков из Стэнфордского университета решила сделать исследования дна океана более доступными.

Зачем это нужно: робота OceanOne планируется использовать для разбора мест кораблекрушений и поиска уцелевшего инвентаря. В случае успешных испытаний такую «русалку» можно переоборудовать для осмотра и ремонта подводных частей нефтяных вышек или поисковых операций в случае крушения корабля или самолета.

OceanOne уже испытали на месте крушения корабля возле берегов Франции. На 100-метровой глубине покоятся нетронутые остатки судна, которые пролежали уже более 300 лет. После внесения корректив в конструкцию робота, исследователи планируют вернуться к его использованию в указанном месте.

Хронология

  • Конец XIX века — русский инженер Пафнутий Чебышёв придумал механизм — стопоход, обладающий высокой проходимостью.
  • год — Никола Тесла разработал и продемонстрировал миниатюрное радиоуправляемое судно.
XX век
  •  год — чешский писатель Карел Чапек представил публике пьесу под названием «Р. У. Р.» («Россумские Универсальные Роботы»), откуда и взяло начало слово «робот» (от словацк. robota).
  • 1930-е годы — появились конструкции внешне напоминающих человека устройств, способных выполнять простейшие движения и воспроизводить фразы по команде человека. Имеются подтверждённые данные о 38 подобных роботах, созданных преимущественно компанией Вестингауз ( немецкими и голландскими инженерами ) в целях рекламы. Первый такой «робот» Televox был сконструирован американским инженером Ройем Уэнсли (англ. Roy J. Wensley) для Всемирной выставки в Нью-Йорке в 1927 году.
  • 1950-е годы — для работы с радиоактивными материалами стали разрабатывать механические манипуляторы, которые копировали движения рук человека, находящегося в безопасном месте.
  •  год — дистанционно управляемая тележка с манипулятором, телекамерой и микрофоном применялась для осмотра местности и сбора проб в зонах высокой радиоактивности.
  •  год — японская компания Kawasaki Heavy Industries, Ltd. получила лицензию на производство робота от американской фирмы Unimation Inc. и собрала своего первого промышленного робота. С тех пор Япония начала неуклонное движение к тому, чтобы стать мировой столицей роботов — с более чем 130 компаниями, вовлеченных в их производство. Изначально сконструированные в США, первые роботы Японии импортировались в малых количествах. Инженеры изучали их и применяли в производстве в таких специфических работах, как сварка и распыление. В 70-х годах были разработаны многочисленные возможности практического применения в данной области.
  •  год — в МГТУ им. Н. Э. Баумана по заказу КГБ был сделан аппарат для обезвреживания взрывоопасных предметов — сверхлёгкий мобильный робот МРК-01.
1980-е
  •  год — коммерческое начало для роботов, производимых на основе высоких технологий (Япония). С этого момента рынок начал расти.
  •  год — 18—27 октября 1982 года в Ленинграде, в выставочном комплексе в Гавани проходила (вероятно, первая в СССР) Международная выставка «Промышленные роботы-82».
  •  год — в Чернобыле впервые в СССР применены роботы для очистки радиоактивных отходов.
2000-е

В середине 2000-х Япония занимает первое место в мире и по экспорту промышленных роботов.

  •  год — МВД России в Перми проводило испытания тестового робота-милиционера Р-БОТ 001.
  •  год — в США в продажу поступили новые роботы PR2.
  •  год — доставлен на МКС робот НАСА Робонавт-2.
  •  год — создан и доставлен на МКС первый японский робот-астронавт.

Летающие роботы

Летающие роботы (они же дроны, они же беспилотники) по большей части используются ради двух вещей: военных операций и развлечений. Много лет правительства разных стран используют летающих роботов для нападения и слежки. Обычные люди тоже могут купить дронов в Интернете и делать что с ними что угодно.

Но группа ученых из Университета Твенте в Нидерландах пытается поднять ставки в использовании летающих роботов. Они хотят приспособить их для спасения жизней людей, особенно во время катастроф, вроде лавин.

Летающие роботы могут забираться в опасные места, куда нет пути человеку. Кроме того, они могут больше увидеть и вовремя спасти жертву. Ученые ожидают, что летающие роботы станут неотъемлемой частью поисково-спасательных работ в ближайшем будущем — особенно в таких местах, как швейцарские Альпы, где постоянно случаются лавины.

Компаньоны и помощники в быту

Особой популярностью в Японии пользуются роботы-компаньоны: в Стране восходящего солнца растет число одиноких людей – как пожилых, так и не очень. Им нужны те, с кем можно поговорить, кто развлечет или подскажет, куда можно сходить вечером. Моделей таких роботов достаточно много. Например, Kirobo Mini (Toyota Motor, 2016 г.) предназначен для бездетных пар: имитирует некоторые повадки ребенка – покачивается, говорит высоким голосом.

В свою очередь, Panasonic в 2017 году представила яйцо на колесиках, внутри которого расположен проектор. Этот робот также говорит детским голосом и общается со своим владельцем на широкие темы – по Интернету устройство может получать доступ к самой различной информации.

Конечно, в Японии можно встретить множество бытовых помощников. Вот, например, некоторые разработки только одной компании Panasonic:

  • робот-кровать, превращающаяся в кресло-коляску;
  • носильщик тяжестей;
  • робот, сортирующий, гладящий и складывающий одежду;
  • передвижной холодильник, доставляющий еду прямо в комнату, и другие.

Каждое устройство в деталях продумано, чтобы максимально облегчить выполнение рутинных обязанностей. Например, робот-посудомойщик от Panasonic представляет собой механизированную руку, которая может собрать со стола или плиты посуду, положить ее в посудомоечную машину или самостоятельно очистить под струей воды. Благодаря сенсорам и специальным резиновым «напальчникам» устройство хорошо справляется даже с хрупкими материалами: стеклом, хрусталем, фарфором и т.д.

Еще один интересный помощник в быту – дополнительная пара рук MetaLimbs (2017 г.). Они управляются с помощью датчиков, надеваемых на ноги. Немного приноровившись, пользователь может добиться от устройства достаточно большой точности, и тогда сфера применения таких рук становится более чем широкой.

Используемые технологии

Искусственный интеллект

Свойство механизмов самостоятельно выбирать путь решения для каждой поставленной перед ним задачи, опираясь на информацию базы данных. Важнейший аспект при этом – самообучение, в ходе которого робот разрабатывает программы действий.

ИИ использовались при создании: Deep Blue – анализатора-шахматиста, который сумел обыграть чемпиона мира Каспарова; MYCIN, способного ставить точный диагноз пациенту после оценки состояния его здоровья, а также ViaVoice служащие в качестве консультантов, умеющие поддерживать конструктивный диалог с потребителями.

Навигация

Навигационная бортовая система выполняет несколько функций одновременно:

Наибольший вклад в совершенствование систем навигации внесли компании, разрабатывающие видеоигры. Они инвестировали огромные средства в исследования и разработку соответствующих проектов.

Компьютерное зрение

Технология, наделяющая робота способностью определять, классифицировать объёмные предметы и изображения, распознавать образы. Благодаря этому были созданы устройства, собирающие пазлы и конструкторы Lego, системы видеонаблюдения, 3D-моделирования, виртуальной реальности, индексированные базы изображений.

Спасение жизней

Как известно, для Японии землетрясения и цунами – весьма частое явление, поэтому здесь активно развиваются роботы, которые смогут помочь в спасении людей при чрезвычайных ситуациях. Благодаря значительной физической силе и возможности работать в сложных условиях, эти устройства будут способны разбирать завалы, искать выживших и т.д. Одна из интересных разработок – пара гуманоидов HRP-2 Kai и Jaxon (назван в честь Майкла Джексона), представленных в 2015 году. В том же 2015-м Honda анонсировала своего робота– E2-DR, с прототипом которого публика познакомилась в 2017-м.

Учитывая задачи, стоящие перед этими роботами, они должны уметь преодолевать завалы, узкие проходы, идти по неровным поверхностям и в помещениях с низкими потолками. HRP-2 Kai и Jaxon, например, продемонстрировали, как ходят по тонкой доске или по-обезьяньи: согнув спину и опираясь на руки. В свою очередь, E2-DR способен подниматься по лестницам (в том числе вертикальным) и работать под дождем. Создатели обоих проектов признаются, что пока их детища не готовы войти в ряды спасателей – необходимо дальнейшее совершенствование моделей.

Режимы работы

Конструкция вариатора автомата и коробка передач робот для многих остается непонятной. Данное устройство работает на принципах механики. Однако при желании пользователя его можно переключать на автоматизацию. После того как человек перейдет в соответствующий режим, электронный блок будет заблокирован. Последний сам станет анализировать алгоритм работы. Водителю нужно лишь нажимать на педаль газа и следить за тем, что происходит на дороге. Довольно часто в пробках, судя по отзывам, коробка передач робот становится незаменимой. Если режим ручной, то водителю будет позволено самостоятельно переключать передачи с пониженной на повышенную, и наоборот. Управление можно осуществлять при помощи обычного рычага коробки передач.

Ссылка на основную публикацию